本书是在参考国内外相关教材与文献的基础上总结编写而成的。本书的内容分为两篇,分别介绍了张量分析与连续介质力学的基础知识,共分为12章。在保证课程基本要求的前提下,强调理论基础知识的全面性与数学语言的规范性,注重概念的准确性与内容的关联性,数形结合、深入浅出地介绍了定义、定理、运算规则,并且结合例题,力求加深读者对抽象概
解析几何和线性代数是高等学校非数学类专业学生所必须掌握的重要数学基础知识。本书对线性代数的知识体系进行了重构,强化了代数与几何相结合的数学思想,注重数学思想和方法在教学中的应用,注重引导学生从学习知识向学习创造知识转变,力求体现“知识学习为载体,能力培养是关键,素质养成为目标”的课程教学理念。 本书包括解析几何、线性代
本书为俄罗斯7-9年级使用的几何教科书的中译版本,包含了俄罗斯10-11年级数学教学大纲的内容,涵盖了代数、初等的数学分析和几何,书中特别注意几何问题的解决方法,并执行了俄罗斯7-9年级数学教材中各种定义的不同解释。全书对几何学的定理及定义介绍得非常细致且全面,每节之后都附有课、作业、问题三部分内容,并且书中的题目均划
本书介绍了有趣的四维几何,并从非欧几何学出发,逐渐涉及狭义相对论、哥德尔的时间旅行等物理学世界。几何体是不变的形式。本书的目的是将宇宙描绘成一个几何体,目标是呈现一个我们所处的弯曲空间的直观图景,以深入浅出的形式,展示了我们宇宙中时间的流逝和各种可见的变化是如何可能用四维时空的术语进行思考和描述的。本书充分展现了时空的
1899年希尔伯特(Hilbert,1862-1943)出版《几何基础》,1903年出版修订后的第二版;1902年美国数学家汤森德(E.J.Townsend)依希尔伯特还未出版的修订稿翻译出版了英文版。本次影印,德文版依德国Teubner出版社的1903年版,英文版依美国OpenCourt出版社的1902年版的1938
几何图形往往能够带给人们简洁、优美的直观感受,这也是几何学的魅力之所在。本书将带领读者体验一场别开生面的几何之旅,领略各种美妙的几何奇观。首先展示共点、共线、共圆等神奇的几何现象,然后介绍圆形、黄金矩形等赏心悦目的几何图形,最后揭秘令人眼花缭乱的几何错觉。为了让读者充分领略这些几何奇观的美妙之处,享受优美的几何图形所带
本书在理论方面以韦伊定理为目标,介绍有限域上平面代数曲线的几何、数论与代数性质和概念。韦伊定理是几何、数论和代数的结合,这种结合发展出纯粹数学的一个新的交叉分支:算术代数几何。本书意图帮助莘莘学子了解和掌握有限域上的代数曲线理论,使代数曲线理论成为研究通信中各种问题的有力的数学工具。本书分为预备知识、代数曲线的理论、代
黎曼几何引论课程是基础数学专业研究生的基础课。从1854年黎曼首次提出黎曼几何的概念以来,黎曼几何学经历了从局部理论到大范围理论的发展过程。现在,黎曼几何学已经成为广泛地应用于数学、物理的各个分支学科的基本理论。本书上册是“黎曼几何引论”课的教材,前四章是黎曼几何的基础;第五与第六章介绍黎曼几何的鞭粉方法,是大范围黎曼
本书主要收集了四面体几何元素的位置关系方面研究的新成果,全书共分为两篇,包含十章内容。本书应用类比的方法,将三角形中共点、共线、共圆等性质引申推广至四面体中,得到一系列四面体中的共点、共面、共球等性质。
我们将在第一章介绍关于纽结与链环的基本概念,然 后在第二章用上面提到的初等讲法来介绍琼斯多项式,并在第三章用它来证明泰特关于交错纽结的猜测.这是本书的一条主线,这条主线可以叫作绳圈的拓扑学.