本书是华中科技大学数学与统计学院编写的《微积分学》第四版,根据最新制订的“工科类本科数学基础课程教学基本要求”编写而成。全书分为上、下两册,上册包括一元函数微积分和微分方程。本书本着“通用、简明、高效”的方针,采用“精简、集中、类比”等措施对教学内容进行了优化,旨在构造一个内容直观易懂、重点难点突出、数学思想明确、注重
本书系统介绍了求解非线性数学物理方程的直接代数方法之一的辅助方程法,主要内容包括求解不可积非线性方程的标度变换法和二阶辅助方程法,求解非线性数学物理方程的扩展双曲正切函数法的推广、Riccati方程映射法的推广、辅助方程法及其推广、一般椭圆方程展开法以及这些辅助方程的B?cklund变换与解的非线性叠加公式和解的分类,
复变函数论与运算微积 第3版
本书是一部实分析方面的经典教材,主要分三部分,第壹部分为经典的实变函数论和经典的巴拿赫空间理论;第二部分为抽象空间理论,主要介绍分析中有用的拓扑空间以及近代巴拿赫空间理论;第三部分为一般的测度和积分论,即在第二部分理论基础上将经典的测度、积分论推广到一般情形。.
本书是测度论与实分析的基础教材,内容涵盖了Lebesgue测度以及一般测度的基础知识、Dynkin-λ定理和测度扩张定理、可测函数、几乎处处收敛和依测度收敛、Riesz定理、可测函数的逼近、Lusin定理、Lebesgue积分理论、乘积测度与Fubini定理、极大函数与Lebesgue微分理论
《泛函分析》是泛函分析入门教材,以Hilbert空间为主线进行讲述。《泛函分析》主要分成两个部分,第一部分有三章,其中,第一章讲Hilbert空间几何结构、正交投影定理、Riesz表示定理等,第二章讲Hilbert空间上有界线性算子与谱的基础知识,第三章专门深入讲紧算子与两择一定理;第二部分也是三章。包括无界算子(闭算
以经管数学大纲为依托,内容涵盖函数,极限和连续,导数和微分,中值定理和导数的应用,不定积分,定积分,多元函数微积分,微分方程和无穷级数,体现完整数学体系的同时,体现独立本科必需、够用的原则,通过实际案例突出应用型,通过适当的案例导入深入浅出讲解问题。
在第一章中介绍Lipschitz曲线上的Fourier乘子理论,主要介绍一维无穷曲线上的Fourier乘子、奇异积分和泛函演算理论;第二章主要介绍单位圆的Lipschitz扰动上Fourier乘子理论以及相关问题的研究。第三章主要介绍用Clifford分析的背景知识。第四章和第五章则主要着眼于阐述利用Clifford分
本书总结了作者近十年来在有限元逐点超收敛研究方面取得的重要研究成果,全书共分六章。第一章是预备知识,主要介绍一些常用的记号和导出本书主要结论需要用到的引理和定理。第二章介绍多维投影型插值算子和多维有限元的插值基本估计(即所谓的弱估计)。第三章介绍多维离散格林函数与多维离散导数格林函数及其估计,它是本书的核心内容。第四章
本书主要内容是对电磁学领域的最重要的公式麦克斯韦公式,从各个角度如适量分析、平面波、波导传输模式、电磁波辐射、金属球散射、半平面内导体散射等领域进行分析和解读,以帮助高校理工科学生以及科研人员更好的理解麦克斯韦方程。