本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式
《代数曲线和黎曼面(影印版)》作者认为复数域是与代数曲线酋次邂逅的好地方,在那里,读者对于曲面、积分和其他概念的经典直觉可以发挥作用。因此,第一章列举了代数曲线的许多例子。如此一来,该书便以复坐标图表和亚纯函数为中心舞台,开启了一场对黎曼面的启蒙教程。但是,该书主要的例子来自射影曲线,从而内容逐步而坚定地转向了代数范畴
本书是作者多年从事复变函数论双语教学经验的总结.其内容设置完全适合我国现行高等院校(特别是师范院校)本科教学的教学目标与课时需要.本书内容深入浅出、层次分明,理论体系严谨、逻辑推导详尽,强调“分析式”教学法,在引入概念前,加入了必要的分析与归纳总结,然后提出相应的概念;在提出问题之后,进行推理分析、增加条件,最后得到问
本书是一部关注度很高的教科书,内容独特、简明,逻辑性强,自成一体,为有志成为全职分析师、物理学家、工程师和经济师的读者,介绍了测度论基础知识。与上一版相比,第3版新增傅里叶变换一章。本书的另一个突出特点是书后附有全部习题解答。本书也可作为相关专业的读者自学读本。
全书分为上、下两册。下册内容包括级数、向量代数与空间解析几何、多元函数微分学、重积分、曲线积分、曲面积分等。其中无穷级数这一章里的“函数项级数的一致收敛性”一节理论性较强,读者可以根据具体情况选读。另外,在多元函数的积分学中,某些理论的叙述及证明较为抽象或复杂,例如重积分的可积性及其证明、积分变量替换法的证明等等,本书
《工科数学分析教程(下册)》是一本信息化研究型教材.本书包括函数序列与函数项级数、傅里叶级数与傅里叶变换、多变量函数的极限与连续、多元函数微分学、向量函数的微分学、常微分方程与数值解法初步、重积分、曲线积分与格林公式、曲面积分、含参变量积分.本书体系严谨科学、内容由浅入深,符合学生认知规律.每章都有提高课,内容包括离散
《工科数学分析教程(上册)}是一本信息化研究型教材本书包括数列极限、函数极限与连续、导数的计算与应用、泰勒公式、不定积分、定积分的应用、广义积分、数项级数.本书体系内容由浅入深,符舍学生认知规律.每章都有提高课,内容包括混沌现象与极限、连续函数不动点定理以及应用、极值问题与数学建模、泰勒公式与科学计算、积分算子的磨光性
本书内容包括:连续映射的一般理论、赋范空间中的微分学重积分、R中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。
本书内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。
本书分5章。第1章介绍常微分方程的建模案例和基本概念。第2章介绍几类重要一阶微分方程的初等积分法及几类可积的高阶微分方程的求解。第3章阐述常微分方程初值问题解的存在性、**性,以及解关于初值的连续依赖性和可微性。第4章研究常微分方程组解的基本理论和求解方法。第5章介绍常微分方程数值计算和数学软件求解方法,并给出建模应用