本书以通俗易懂的语言向读者描述了各类常用算法。全书包括四个部分,涉及排序与搜索、算术与密码、规划、协同与设计、优化四个领域,每个部分都给出该领域中常用的算法,每一个算法都从一个实际的生活场景引入。通过作者深入浅出的介绍,读者可以轻松了解计算机科学中常用的算法的原理,具备初步的计算思维能力。本书适合作为高校计算机科学入门
"本书对数理逻辑的基础知识进行了系统介绍。全书共8章,其中,第1章介绍了数理逻辑的基本思想以及后面各章所用到的预备数学知识,第2~6章分别介绍了命题逻辑和谓词逻辑,构造了它们的形式系统,并讨论了它们的系统性质,进而引入了包含数学理论的形式系统,前6章是本书核心内容;后2章介绍了哥德尔的不完全性定理、算法可计算性,这部分
证明是数学思想中最重要,也是极具开拓性的特征之一。没有证明,就无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是
本书将数学建模和数学实验课程有机融合,以数学软件为操作平台,以解决数学问题为主要线索,为培养大学生数学建模能力打下基础,为提高大学生计算机应用水平创造条件。全书共7章,分别为数学建模入门、简单优化模型、数学规划模型、常微分方程模型、插值与拟合、图论模型、概率统计模型。各章包括基本内容和典型案例分析,通过案例教学开拓学生
宇宙的广袤不断激发人类的好奇心,令人浮想联翩。为了更好地认识无穷大和宇宙自诞生以来的演变历程,我们必须转向另一个无穷,即无穷小,以粒子物理学标准模型为基础,研究其中的夸克、轻子和玻色子,力争在最小尺度上破解物质的结构之谜。没有无穷小,我们就不能对宇宙大爆炸、大型恒星的结构和演化及物质的诞生展开描述。没有两个无穷,我们将
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、通过模型检测进行验证、程序验证、模态逻辑与代理、二叉判定图这些内容。本书主要讨论有关软硬件规范和验证这一主题的内容,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、Lowenheim-Skolem定理,并介绍了Alloy语言和
本书第一章为归纳法简述,是对这个主题的简要介绍,在几何论的背景下描述了归纳法,并提出几个相关示例,说明如何由它导出非负整数的不同性质;第二章的题目为加和、乘积与相等,主要适用于想要熟悉归纳法应用的基础知识的读者,所提出的问题的性质与最初促使归纳法作为代数工具使用的问题相似;从第三章开始,通过讨论数学各个领域的归纳法,跟
本书结合案例,系统介绍了使用MATLAB进行数学建模的相关知识和方法论。 本书分为11章,主要包括走进数学建模的世界、函数极值与规划模型、微分方程与差分模型、数据处理的基本策略、权重生成与评价模型、复杂网络与图论模型、时间序列与投资模型、机器学习与统计模型、进化计算与群体智能、其他数学建模知识、数学建模竞赛中的一些基本
数学建模系列比赛是一项考察学生使用数学工具解决实际问题的比赛,其中含金量最高的比赛为全国研究生数学建模竞赛、全国大学生数学建模竞赛,获得的奖励对推免、评奖学金等都有较大的贡献。本书是作者学生时期参加数学建模竞赛的获奖论文与任教职之后指导学生参加数学建模竞赛的获奖论文之中,精选完成得最为理想的六篇加工而成。为了展现最真实
本书主要从数学规划的视角出发,系统地介绍了数学优化问题建模和求解的相关理论、方法、实际案例,以及基于Python和数学规划求解器(COPT和Gurobi)的编程实战。全书共分为四部分。第一部分为基本理论和建模方法,重点介绍了数学规划模型分类和建模方法(包括逻辑约束与大M建模方法、线性化方法)以及计算复杂性理论。第二部分