本书内容包括集合与点集、Lebesgue测度、Lebesgue积分、Lebesgue积分意义下的微分与不定积分以及Lp空间。本书每章后附有习题供学生进一步学习,同时书末附有系统的提示和建议。本书可以作为高等院校数学及其他相关专业的教材和教学参考书。
本书系统介绍了全纯函数的Cauchy积分理论及其应用、Weierstrass级数理论及其应用、Riemann共形映射以及函数空间等,主体内容特别是几何函数论精练清楚,可视化较好便于理解,同时面向现代化的后续研究特别是侧重于解析函数函数空间及其对信号处理的应用。
本书系统地介绍偏微分方程的最新理论和方法,着重介绍广义函数理论,Sobolev空间的性质及其应用,二阶椭圆、抛物、双曲方程的存在性、唯一性、能量不等式等。本书循序渐进地阐述广义函数理论、Sobolev空间性质等与现代泛函分析理论等现结合,并强调在偏微分方程研究中的具体应用。本书内容深入浅出,文字通俗易懂,并配有适量难易
本书第一版获得2002年教育部颁发的“全国普通高等学校优秀教材二等奖”。此次修订继续贯彻“启发应用意识,提高应用能力”的宗旨,对教材内容和习题均进行了认真修改和调整,注重培养学生的数学理论修养和应用能力。具体有以下特点:(1)增添数学模型教学内容,根据数学理论的进程,循序渐进地引入数学建模实践环节相关的内容,培养学生利
数学分析(第3版)(下册)
Lectures on the Analysis of Nonlinear Partial Differential Equations Vol. 4
本书系统地介绍了Schwarz引理、保角映射以及复函数的逼近,并且着重地介绍了Carathodory和Kobayashi度量及其在复分析中的应用,论述深入浅出,简明生动,读后有益于提高数学修养,开阔知识视野。
本书从一道冬令营试题的背景谈起,详细介绍了哈尔测度及其相关知识,全书共分8章,分别为一道冬令营试题、集合、拓扑空间、距离空间、点集的容积与测度、哈尔测度、右哈尔测度和哈尔覆盖函数、局部紧拓扑群上右不变哈尔积分的存在性
本书是深圳大学复变函数与场论教研组编写的《复变函数与场论简明教程》一书的配套学习指导书。 本书是在深圳大学“复变函数与场论”课程建设的需求下编写的,内容主要以优秀教材《复变函数与场论简明教程》的课后习题及解答为主,给出了习题的详细解答过程、解题思路、依据和结果,以备学生参考。全书共分为6章,章节顺序及内容编排与教材一
《凸优化算法》几乎囊括了所有主流的凸优化算法。包括梯度法、次梯度法、多面体逼近法、邻近法和内点法等。 这些方法通常依赖于代价函数和约束条件的凸性(而不一定依赖于其可微性),并与对偶性有着直接或问接的联系。作者针对具体问题的特定结构,给出了大量的例题,来充分展示算法的应用。各章的内容如下:第一章,凸优化模型概述;第2章