本书对数学分析的基本概念、主要思想、计算与证明方法、实际应用等进行了归纳和总结,重点放在解题方法和实际应用上.读者在掌握了本书介绍的一些知识和方法后,可以开阔思路,提高解题能力,增强学习兴趣.此外,每章都配有一定量的习题,这些题目多数是研究生入学考题,并附有提示或参考解法.本书可作为学完“数学分析”课程后进一步学习“数
本书是编者结合长期在教学第一线积累的丰富教学经验编写而成。全书共11章,内容包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、多元函数微分学、二重积分、无穷级数、微分方程、差分方程。本书按节配置适量习题,每章配有总习题。每章末通过二维码链接知识点总结和典型问题选讲视频。书末链接部分
保持问题是算子代数和算子理论交叉领域中的重要课题之一.本书共6章,第1章介绍书中涉及的算子代数和算子理论预备知识;第2章给出几类保持相似性的线性映射的刻画;第3章研究Banach空间有界线性算子构成的代数上保持相似性的非线性映射;第4章刻画套代数上的Jordan同态;第5章研究保持几类正交性的线性映射;第6章给出保持算
高等数学课程因其在培养大学生理性思维、计算能力、创新意识等方面具有不可替代的作用,成为非数学专业开设的一门重要的公共必修课。本书是按照“工科类本科数学基础课程教学基本要求”,按照突出数学思想和方法、淡化运算技巧、强调实际应用的原则,在经典是的理论框架下编写而成。 本书的特色主要体现在以下三个方面:结构优化。适当精简初
本书对数学分析的实数与实函数、数列的极限、一元函数的极限、一元函数的连续性、导数与微分、微分中值定理及导数的应用、不定积分、定积分、广义积分、含参变量的积分、数项级数、函数列与函数项级数、幂级数和傅里叶级数、多元函数的极限与连续、多元函数微分学、重积分及曲线积分与曲面积分等重要知识点进行了系统的讲解和辨析。全书每个章节
当前各高校对大学生数学建模竞赛非常重视,微分方程数学建模是数学建模中非常重要的组成部分。利用微分方程建模并用数值求解是解决实际应用问题的非常有效的途径之一。本书选取了最新的例子,分为常微分方程建模和偏微分方程建模两大部分,其中常微分方程建模包括传染病模型、药物动力学模型、药物动力学模型、种群关系数学模型等;偏微分方程建
本书从Hilbert空间的一些基本理论出发,讨论了Hilbert空间中算子矩阵的谱和数值域的性质,研究线性算子的数值域、二次数值域以及n次数值域的对称性,探索运用算子矩阵的n次数值域逼近其谱的新途径。主要内容包括:绪论、基本概念、Hamilton算子矩阵的谱等。
本书共六章。第一章讲述实域内常微分方程理论的基本知识,包含:解的存在、唯一和对初值的连续相依性定理;动力体系的概念;积分线在常点附近的局部直性等。第二章讲述庞加莱(J.H.Poincare)和本迪克森(I.O.Bendikson)所创建的积分线在平面和锚圈面上的定性理论及其近代的发展。第三章讲述维微分方程组的解的渐近性
本书以实际应用案例为主导,讲授微积分基本思想和方法,旨在激发学生学习数学的兴趣,明确数学的用途,进而培养学生分析和解决实际问题的能力,使学生能够应用微积分基本思想和方法分析与解决实际问题。本书内容共九章,涉及函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,多元函数微积分,微分方程,无穷级数,M
数学分析选讲是数学类专业最重要的基础课数学分析的后续课程,帮助学生进一步夯实数学分析基础以及为考研做准备.本书按专题选讲的形式编写,配有一定数量的典型练习题,包括极限、一元函数的连续性、一元微分学、一元函数积分学、级数、多元微积分.本书由浅入深、重点突出,对提高数学分析水平和能力都有很大的帮助,可作为高等院校数学类及相