《线性代数解题方法与技巧》收集了线性代数课程的大量经典习题。
《离散数学(第2版)》系统地介绍了离散数学的经典内容,全书分为9章,分别介绍了命题逻辑、谓词逻辑、集合论、关系、函数、图论基础、特殊图类、代数系统、格和布尔代数。每节都有精选习题,书后有部分习题参考答案与提示。《离散数学》在内容安排上循序渐进、通俗易懂、结构严谨、便于自学,适合计算机及相关专业本、专科学生作为教材,也可
discretemathematicalstructures,sixthedition.offersaclearandconcisepresentationofthefundamentalconceptsofdiscretemathematics.idealforaone-semesterintroductorycou
《高等学校教材:近世代数基础(修订本)》是张禾瑞同志1952年著《近世代数基础》的修订本,内容除第一版中的基本概念、群论、环与域、整环里的因子分解等四章外,还增加了关于“护域”的内容。《高等学校教材:近世代数基础(修订本)》可作为综合大学数学系和高等师范院校有关专业的教学参考书。
本书是根椐理工科的数学教学大纲编写的,作为昆明理工大学《线性代数》课程使用的教材。在使用过程中,作过多次修改。在内容编写上,我们注意到以下几点:第一,本课程的教学时数少,为了使学生能在较少的时间内掌握好基本知识,编写时尽量使各章内容少而精,重点突出,便于理解和掌握.特别是对第三、四两章的理论体系的安排及定理的证明上,更
本书内容涵盖高等代数的主要知识点,对重要知识点和难点部分进行精讲,对常见的类型题和方法进行了总结,一些问题给出了多种处理方法。
《线性代数学习指导与习题解答》是根据工科类本科数学基础课程教学基本要求编写的,也是编者多年从事线性代数课程教学和辅导的总结。《线性代数学习指导与习题解答》共六章,包括矩阵、线性方程组、线性空间与线性变换、行列式、特征值与特征向量、二次型。书中不仅分析了各个章节的重点内容,而且整理出了主要概念和结论。同时各部分都列举了若
本书内容分为:行列式、矩阵及其初等变换与解线性方程组、矩阵的运算、向量的线性相关性与线性议程组的解的结构、特征值与特征向量等七章。
本书为普通高等教育“十一五”规划教材。全书共分为五篇,主要内容包括命题逻辑和谓词逻辑的基本概念和推理理论:集合的基本知识、关系和函数;半群与群、环与域、格与布尔代数等代数系统的基本概念与性质;欧拉图、哈密尔顿图、二部图、平面图及树的基本概念和表示;基本计数原理、容斥原理、鸽巢原理、二项式定理、生成函数、递推关系和Pol
离散数学,是现代数学的一个重要分支,是计算机科学中基础理论的核心课程。离散数学是随着计算机科学的发展而逐步建立的。它形成于20世纪70年代初期,是一门新兴的工具性学科。为适应计算机科学教学的需要,组织编写了这本理工科院校计算机专业适用的基础教材。内容包括:数理逻辑;谓词逻辑;集合代数;二元关系;函数;代数结构;格与布尔