本书通过一系列重要的数学地标,系统地梳理了微积分理论,既包含课堂上没讲授的数学通识内容,又包含对一些复杂知识点的细致拆解,还包含微积分在现实生活中的应用,帮助读者开阔数学视野、提高数学思维、加深对数学的理解。 全书共分为四篇:第一篇“数学通识,一些你应该了解的观点和事实”为读者构建数学学习的理念和方法;第二篇“从有限
本书共9章,包括:一般概念、已解出导数的一阶方程的若干可积类型,已解出导数的一阶方程的解案存在问题,未解出导数的一阶方程,高阶微分方程,线性微分方程的一般理论,特殊形状的线性微分方程,常微分方程组,偏微分方程、一阶线性偏微方程,一阶非线性偏微方程,最后附有答案。 本书适合数学专业师生及数学爱好者参考阅读。
本书主要研究具有临界指数的几类分数阶椭圆方程解的存在性、多解性及解的集中性。第一部分,在没有单调性条件和(AR)条件下,研究了具有临界指数增长的分数阶Schrdinger方程基态解的存在性。第二部分,研究了临界情况下分数阶奇异扰动问题解的存在性和集中性。第三部分,研究了具有临界指数的分数阶Kirchhoff方程解及多解
"本书是哈尔滨理工大学理学院工科数学教学中心编写的《复变函数与积分变换》配套作业集。主要内容包括:复变函数与积分变换作业集六套,期中考试模拟题六套,期末考试模拟题十套;知识点涵盖复数与复变函数、解析函数、复积分、复级数、留数理论、傅里叶变换和拉普拉斯变换等。题型丰富,涵盖选择题、填空题、解答题、证明题等。本书可供高等院
增广拉格朗日方法主要是对优化问题求解的应用,但是用增广拉格朗日方法求解变分不等式的工作却很鲜见。2000年,学者Antipin提出了具有双约束条件的变分不等式,运用增广拉格朗日函数构造了数值算法,同时证明了该算法的全局收敛性,在理论研究上得到了较好的结果。Antipin关于研究变分不等式所运用的这一思想是很独特的,与其
泛函分析
《非局部扩散方程的传播动力学》一书简要回顾了非局部扩散方程的描述与应用以及基本解、最大值原理、比较方法等基本理论和行波解、渐近传播速度、新型整体解等传播概念,重点介绍了空间周期介质中的单稳与双稳非局部扩散方程、时间周期介质中的时滞非局部方程以及移动介质中的非局部扩散方程的时空传播理论。
本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓“微分”是指什么?、所谓“积分”是指什么?。
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支,是数学的一门基础学科,内容主要包括极限、微分学、积分学及其应用。本书的内容包括函数,导数及其应用,指数、自然对数函数及其应用,定积分,多元函数,三角函数,积分技术,微分方程,泰勒多项式和无穷级数,概率和微积分。全书图表清晰,版式美观,条理清楚,从概念介
本书主要讨论了传统数学分析中的一些经典课题,并给出该课题的相关应用,包括离散型与积分型柯西不等式的应用、广义Gamma函数、完全单调性、广义三角函数、广义椭圆积分、单位球体积以及定积分的计算等内容,此外还介绍了现在渐近分析中的一个重要方法——Mehrez-Sitnik方法。