本书是对平面代数曲线的一个非正式且通俗易懂的介绍,也是代数几何的一个自然切入点。这本书有一个统一的主题:给曲线足够的生存空间,美丽的定理就会随之而来。这本书通过具体的例子和图片介绍抽象的概念,为读者提供了对主题的坚实直觉,同时保持了阐述的简单易懂。数学背景有限的人可以阅读这本书。这是因为对于数学之外的人来说,对代数几何
过去的二十年间,四维流形理论经历了爆炸性增长。目前有许多书籍从规范理论或代数几何等不同角度来探讨这一主题。然而,本书提供了一种从拓扑学角度来阐述的方法。它弥合了与其他学科之间的鸿沟,并介绍了经典但重要的拓扑技术,这些技术以前在文献中并未出现过。本书的第一部分以研究生二年级水平介绍了该理论的基础知识,并概述了当前的研究动
本书为低年级本科生提供了现代数学的一些全景,通过开发和呈现所需工具,帮助理解有限域上椭圆曲线的算术及其在现代密码学中的应用。这种渐近式的引入也为教会学生如何通过将数学作为一种探索来产生或发现证明做出了重大努力,同时,它为研究椭圆曲线密码学(ECC)的实践和实现提供了必要的数学基础。本书引入并发展了抽象代数、数论、仿射几
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要,根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识,注重基本概念的联系和普遍性,部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧,注重学科
本书作者致力于将Steiner树问题的研究与网络构建问题相结合,系统地探讨Steiner树问题的多种变形及其构建策略。本书具体涵盖欧几里得平面上Steiner树构建的两大核心问题:最小费用Steiner点和边问题(简称MCSPE)以及最小费用Steiner点和材料根数问题(简称MCSPPSM)。本书还讨论了网格分层思想
本书的内容是关于楼(building)理论及其在几何和拓扑中的应用。楼作为一种组合和几何结构由JacquesTits引入,作为理解任意域上保距还原线性代数群结构的一种方法,Tits因此项工作获得2008年Abel奖。楼理论是研究代数群及其表示的必要工具,在几个相当不同的领域中具有重要应用。本书的第一部分是作者专为国内学
本书是一本黎曼几何的入门教材,内容包括:微分流形引论、张量分析、黎曼几何基础、测地线理论及子流形几何。本书对研究黎曼几何的三种表示法—不变形式法、活动标架法和自然坐标法——作了统一的处理,介绍了微分流形与黎曼几何中的各种基本概念和技巧,兼顾到经典理论和近代进展的内容,以使读者在学完本教程后能独立从事研究工作。第三版还包
本书是大学几何学的基础课程教材,是作者在北京理工大学数学系讲授解析几何课程的讲稿基础上编写而成的。它的内容既包含传统解析几何的基本内容和方法,也包含经典几何学的初步内容。传统解析几何的主要内容包含:仿射空间与向量代数,仿射坐标系,空间中平面和直线,空间中的旋转面、柱面和锥面,二次曲线和二次曲面的方程化简,二次曲面的圆纹
本书是101计划数学教材。微分几何是一门运用微积分的理论研究空间的几何性质的数学分支学科。本书主要运用分析方法来研究空间(微分流形)的几何性质,系统地介绍了该学科的基础理论、方法和应用。本书从基础概念出发,逐步深入曲线论、曲面论的基本理论和方法,研究内容包括空间曲线的理论、平面曲线的整体微分几何、空间曲面的局部理论、曲
作者通过从球体中衍生的最基本结构,图文并茂地阐述了三维空间里的数。这些美丽的形态,自古以来就是数学与艺术的基石,历经无数代人的探索之后,依然让人着迷。 想象一个球体,球面上任何一点都与另一点相同,并与唯一的球心等距,它就是统一的完美象征。本书通过从球体中衍生的基本结构,图文并茂地阐述了三维空间里的数,这些美丽的形态,自