《人工智能导论第2版》系统地阐述了人工智能的基本理论、基本技术、研究方法和应用领域,全面地反映了人工智能研究领域的发展,并根据人工智能的发展动向对一些传统内容做了取舍,如详细介绍了机器学习方面的内容。《人工智能导论第2版》共分为8章,内容涉及人工智能的基本概念、知识工程、确定性推理和不确定性推理、搜索与优化策略、机器学
人工智能已经上升到了国家战略层面的高度。面对人工智能发展的浪潮与需求高等教育应主动变革,围绕国家人工智能出台的规划和政策,加快促进人工智能技术人才培养。本书以优化知识结构、培养10项能力为出发点,以实施素质教育、培养学生具有新一代人工智能应用意识为目标,以培养学生创新精神、创业能力为重点,以企业人才需求构建新的知识体系
本书从全新的视角诠释了机器学习的基本模型和算法,重点讨论了当前的两项研究热点——神经网络和核方法。全书紧紧围绕从环境约束中学习的概念,将符号知识库作为约束集合,通过采用多值逻辑形式的思想,实现了约束方法与机器学习的深度融合。特别是对深度学习的讲解,很好地呈现了本书中所遵循的基于约束的方法。此外,本书还提供不同难度等级的
本书由机器学习安全领域的学者撰写,针对存在安全威胁的对抗性环境,讨论如何构建健壮的机器学习系统,全面涵盖所涉及的理论和工具。全书分为四部分,分别讨论对抗机器学习的基本概念、诱发型攻击、探索性攻击和未来发展方向。书中介绍了当前*实用的工具,你将学会利用它们来监测系统安全状态并进行数据分析,从而设计出有效的对策来应对新的网
本书以理论和实践相结合的形式深入浅出地介绍强化学习的历史、基本概念、经典算法和一些前沿技术,共分为三大部分:第壹部分(1~5章)介绍强化学习的发展历史、强化学习的基本概念以及一些经典的强化学习算法;第二部分(6~9章)在简要回顾深度学习技术的基础上着重介绍深度强化学习的一些前沿实用算法;第三部分(*后一章)以五子棋为例
如何更好地将人机交互技术应用到具体领域是目前的热点研究问题。本书对人机交互技术及应用进行了比较全面的介绍,内容包括人机交互技术发展历程与设计原则、认知过程、交互模型和系统设计、评估方法、人机交互开发软硬件工具,然后介绍了人机交互技术在体感、手势、增强现实以及脑电交互中的应用。本书的主要内容源于作者的研究工作,部分内容取
《自动控制原理》系统地介绍了经典控制理论的基本内容,着重于基于概念、基本原理和基本方法的阐述。全书共8章,内容包括绪论、控制系统的数学模型、控制系统的时域分析、根轨迹法、控制系统的频域分析、线性控制系统的校正与综合、离散控制系统以及非线性系统分析。为了帮助读者深入理解经典控制理论的重要概念和分析方法,每章都精选了一定数
本教材遵循“实用为主、够用为度”的教学理念,从职场交际口语开始,然后开展阅读、应用文写作和拓展知识等相关内容。本教材共有8个单元,主要内容包括Introduction、Greeting、PhoneCall、Invitation、Reservation、Appointment、Suggestions、Interview。
本书从基础知识入手,详细讲解通过强化学习和深度学习构建AI系统所需的一切,并通过5个完整的项目实例,循序渐进展示如何使用*佳、*简单的AI编程工具(包括Python、TensorFlow、Keras和PyTorch)构建智能软件。具体内容包括AI工具包、Python基础、AI基础技巧、你的第一个AI模型、销售和广告中的
本书重点研究机器学习的数学理论。第壹部分探讨了在非凸优化问题中,选择梯度下降步长来避免严格鞍点的*优性和自适应性。在第二部分中,作者提出了在非凸优化中寻找局部极小值的算法,并利用牛顿第二定律在一定程度上得到无摩擦的全局极小值。第三部分研究了含有噪声和缺失数据的子空间聚类问题,这是一个由随机高斯噪声的实际应用数据和/或含