本书内容源于两位作者多年教授多变量微积分课程的心得,具有两大优势:既强调了该主题的概念和计算内容,又拥有现代观点。前面的章节对经典主题进行了成熟的介绍,包括多变量中的微积分、高级微积分和向量分析,这些主题通常在本科数学课程的三年级或四年级进行讲授;然后转向常微分方程以及二阶经典偏微分方程,这些内容通常可以在高级微积分或
本书内容包括:函数、极限、导数、微分、中值定理、不定积分、定积分、常微分方程、矢量代数与空间解析几何、多元微积分、曲线与曲面积分、无穷级数。
本书共分6章。第1章介绍Fourier变换及其逆变换的基本概念,并讨论它们的若干重要性质;第2章讨论Fourier变换的应用,重点介绍了线性的微分方程、积分方程和偏微分方程的Fourier变换求解;第3章介绍Laplace变换及其逆变换的基本概念,以及它们的若干重要性质,并讨论Laplace逆变换的计算方法;第4章研究
本书是反映20世纪初数学家所发现的一种新的看待传统素材的工具巴拿赫空间与希尔伯特空间的算子理论的英文版专著,中文书名可译为《算子理论问题集》。 本书作者的名字有点长,叫作穆罕默德.希赫姆.莫尔塔德,他是阿尔及利亚数学家,任阿尔及利亚奥兰大学教授。
不变测度方法
本书共10章,内容包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、多元函数微积分、无穷级数、微分方程与差分方程初步、Matlab在微积分中的应用。
本书对数学分析的实数与实函数、数列的极限、一元函数的极限、一元函数的连续性、导数与微分、微分中值定理及导数的应用、不定积分、定积分、广义积分、含参变量的积分、数项级数、函数列与函数项级数、幂级数和傅里叶级数、多元函数的极限与连续、多元函数微分学、重积分及曲线积分与曲面积分等重要知识点进行了系统的讲解和辨析,对近年来一些
本书稿是面向考研学生编写的数学分析真题解析辅导用书,是在2016年版基础上修订而成的。数学分析是数学专业最重要的基础课之一,是数学专业必考科目。全书在系统归纳、整理、分析近年来研究生入学考试数学分析真题基础上,就试题形式、试题难度、重难点范围等做出科学总结,便于考生熟悉考试内容,抓住考试重难点,掌握多种题型的解法,有助
该书立足于数学,结合相关的物理现象,从新的观点出发,对数学物理学科中被广泛关注的若干振动系统的逆谱和逆散射问题进行了系统和深入的研究,其中主要包括Sturm-Liouville差分和微分算子、Dirac微分算子和Jacobi算子。特别地,还研究这些系统基于不完备谱数据的逆谱问题,其主旨在于选取最少的谱数据以确保系统是唯
本书是依据微积分学(或高等数学)教学基本要求,为帮助学生深入学习微积分学知识而编写的一本辅导教材。每章内容包括基本要求、知识点解析、解题指导、知识扩展、习题、部分答案与提示。本书侧重于对学生学习过程中常见的疑难问题以问答方式进行剖析解答,对典型题型的解题方法和策略进行归纳总结,选题范围广、梯度大,注重基础性与综合性相结