本书介绍泛函分析的基础知识,包括距离空间与赋范空间、有界线性算子、Hilbert空间、有界线性算子的谱和拓扑线性空间。 本书旨在提供一本教师易于使用、学生易于阅读的本科生教材。为此,本书在内容编排上注重理论展开的条理性和清晰性,在文字叙述上力求可读性强,定理的证明过程较为详细。本书的第5章不是本科生必须学习的内容,仅
本书介绍了欧氏空间上的Lebesgue测度和Lebesgue积分理论,也附带简要介绍抽象测度论的基础知识。 本书旨在提供一本教师易于使用,学生易于阅读的教材。为此,本书在内容编排上注重理论展开的条理性和清晰性,将基础的部分和较难的部分适当分开,便于在教学上根据情况作取舍,也便于初学者在学习上循序渐进。在文字叙述上力求
本书主要探讨和分析了复空间中的双全纯映照与多全纯函数研究与应用。作者结合多年的研究,分6章呈现本书,包括介绍相关的研究背景、研究现状等;阐述双全纯映照的新子族及其性质,包括a阶k圆锥星形映照的定义、系数估计等;介绍多复变数空间中的Roper-Suffridge算子、多复变数空间中的k全纯函数;阐述k全纯函数的定义及其简
《通俗数学分析N讲》一书在以轻松、通俗的方式解释数学分析重要思想,概念,定理的同时,通过习题的讲解兼顾对读者精确数学写作的训练。本书从极限概念的讲解入手,引出导数与微分的概念,然后在此基础上对积分进行了详细的讲解,最后讲解了函数项级数。本书内容丰富,例题的讲解深入浅出,并且较为详实,尤其适合初等数学向高等数学过渡阶段的
本书以幽默的漫画为载体,从哲学悖论“芝诺的乌龟”作为讲故事的切入点,引出严肃的数学概念——无穷大和无穷小。数学家在这个概念基础上,搞出了一个超级有用的学科——微积分。 微积分是所有理工科专业的必修课,然而,大学公共课里挂科最高的科目就是——微积分。究其原因,课本上并没有很好地解释什么是微积分,课本里一上来就开始讲公式。
德国数学家RobertFricke(1861-1930年)以其对椭圆函数和模形式的研究而闻名。他与著名数学家FelixKlein合作,共同推动了该领域的发展。他最著名的著作之一就是三卷本《椭圆函数及其应用》,被广泛认为是椭圆函数领域的经典之作。他的著作不仅在当时引起了极大的关注,而且至今仍然是该领域的重要参考资料。本书
随着现代科学技术的发展,不适定问题的有效求解在地质勘探、遥测遥感、图像处理、深度学习等领域发挥着日益重要的作用。所谓不适定问题,是指由于客观条件的限制,待求解问题解的存在性、唯一性或者稳定性难以保证。由于工程应用中的输入数据总是带有误差的,不适定问题稳定性的恢复,对求解实际应用问题具有特别重要的意义。在本书前五章,我们
傅里叶级数理论经历了近两百年的发展后已经成为现代数学的核心研究领域之一。一方面,它与偏微分方程论、复变函数论、概率论、代数及拓扑等许多数学分支都有密切关系。另一方面,它是工程技术、经典物理及量子力学等学科中的重要工具,它在热学、光学、电磁学、医学、空气动力学、仿生学、生物学等领域都有广泛的应用。傅里叶级数理论的产生是数
本套教材包含微分方程的基础内容,分上、下册。上册主要内容为常微分方程理论基础,包括基本概念、初等积分法、高阶线性微分方程、常微分方程组、基本定理、定性和稳定性理论初步、离散动力系统简介等。下册主要内容为偏微分方程理论,包括绪论、一阶偏微分方程、二阶线性偏微分方程的经典理论、偏微分方程解的性质、广义函数及Sobolev空
本书系作者凭借多年深耕数学分析教学一线的宝贵经验,精心编纂而成。挑选了一系列数学文化与教学案例,涵盖了实数的无穷奥秘、极限的深邃思想、数学常数的独特魅力、零点存在定理的妙用、反例函数、无穷级数以及分形等多个方面。本书旨在引导读者领悟数学精神,品味数学之美,点燃对数学的热爱与追求。本书贴近教学实际,注重知识性、趣味性、应