《分析学练习.第2部分:非线性分析(英文)》是《分析学练习》的第2部分,在第1部分中,我们关注了分析学中的一些经典的工具,具体包括测度空间、测度理论、测度理论和拓扑之间的相互作用,以及泛函分析(巴拿赫空间)。在书中,我们的主要注意力转向非线性分析的课题,这些课题在实际应用中是非常实用的。我们要处理以下问题:1.函数空间
本书共有十三编,内容包括Bernstein多项式初阶,Bern-stein多项式与Bernstein算子,Bernstein算子和Bezier曲线,单纯形上的逼近定理,B样条、B网、B形式,Bernstein多项式的迭代极限,高维Bernstein多项式等。本书适合大学师生及数学爱好者参考使用。
本书共分7编,详细讲述了狄多等周问题从提出到深入研究的整个过程,介绍了狄多等周问题的历史,等周问题中的矩阵方法,等周不等式,等周亏格上界估计,几何不等式与积分几何,盖尔方德积分几何等内容。本书可供从事这一数学问题研究或相关学科的数学工作者、大学生及数学爱好者参考阅读。
本书从一道IMO试题的证法谈起,详细介绍了有关Erdos-Mordell不等式的相关内容,给出了多种证明方法,并以此为基础对Erdos-Mordell不等式进行了加强与推广,对高维空间与球面上的Erdos-Mordell不等式也给出了结论与猜想,最后还介绍了国外研究此不等式的成果。本书适合数学专业的大学师生及数学爱好者
本书分为上下册,共十章,上册六章,下册四章。前四章是实变函数逼近论的经典问题的基础知识,其中特别注意用近代泛函分析的观点和方法统贯材料。后六章是本书的重点所在,系统地介绍了逼近论在现代发展中出现的两个新方向——宽度论和**恢复论。本书可供高等学校基础数学、计算数学专业的高年级大学生以及函数论方向的研究生作教材或参考书,
本书分为上下册,共十章,上册六章,下册四章。前四章是实变函数逼近论的经典问题的基础知识,其中特别注意用近代泛函分析的观点和方法统贯材料。后六章是本书的重点所在,系统地介绍了逼近论在现代发展中出现的两个新方向一一宽度论和**恢复论。本书可供高等学校基础数学、计算数学专业的高年级大学生以及函数论方向的研究生作教材或参考书,
本书由4章组成,组织结构如下:在章中,我们研究了凸集和函数的基本性质,同时特别关注了一类在优化中很重要的凸函数;第2章主要研究了凸集的法线和凸函数的子梯度的基本演算规则,这是凸理论的主流;第3章涉及到凸分析的一些额外的主题,它们在很大程度上是应用性的;第4章从定性和数值的角度,全面地研究了凸分析在凸优化问题和选址问题中
本书分别从线性*值问题、二次函数的*值与*小值、有理函数和无理函数问题、解等式、不等式问题的常用方法和技巧……共11章介绍了竞赛中的不等式问题.从多方面为学生提供了不等式问题的解法并培养了学生的创造性思维。
本书是一本引进版权的国外数学英文原版教材,中文书名可译为:《为有天分的新生准备的分析学基础教材》。本书的作者有三位:第一位是彼得.M.吕蒂,美国圣文森特山学院教授;第二位是吉多.L.外斯,圣路易斯华盛顿大学教授;第三位是史蒂芬.S.萧,圣路易斯华盛顿大学教授。
《现代分析及其应用教程(英文)》通过度量空间中序列的收敛性讨论了完备性和紧性等问题,并给出了解决相关问题的方法,还阐述了现代分析中的另一种拓扑方法。《现代分析及其应用教程(英文)》可应用到微分方程和积分方程、线性代数方程组、近似理论、数值分析和量子力学等领域,适合数学本科生、数学教师和其他需要学习一些数学分析知识用于其