本书讲述了紧闭包理论及其应用,紧闭包是一种通过约化到正特征来研究等特征环的方法。本书涵盖了紧闭包的基本性质,包括各种类型的奇点,例如F正则奇点和F有理奇点;介绍了该理论的基本定理,包括Brian?on-Skoda定理的各个版本、各种同调猜想以及关于约化群不变量的Hochster-Roberts/Boutot定理。此外,
《线性算子的分解和Banach空间的几何(影印版)》综述了Banach空间理论取得的相当大的进展,这是Grothendieck的奠基性论文《拓扑张量积的度量理论概述》的结果。《线性算子的分解和Banach空间的几何(影印版)》作者考虑的中心问题是Banach空间X和y具有性质:每个从X到y的有界算子都具有Hilbert
《Lyapunov指数和光滑遍历理论(影印版)》是对光滑遍历理论的系统介绍。讨论的主题包括Lyapunov指数的一般(抽象)理论及其在微分方程稳定性理论、稳定流形理论、绝对连续性和具有非零Lyapunov指数(包括测地流)的动力系统遍历理论中的应用。作者通过几个非零Lyapunov指数动力系统的典型实例,说明了该理论的
C*-代数在20世纪70年代得到了极大复兴,这缘于Brown、Douglas和Fillmore在C*-代数扩张中引入了拓扑方法,以及Elliott使用K-理论为AF代数提供了一个有用分类。这些结果成为一系列用于分析具体C*-代数出色的新工具之开端。本书通过详细分析几种重要的C*-代数类,介绍了该主题的基础知识,可作为研
《基于多元样条插值的有限元方法》系统介绍了采用多元样条插值基函数构造平面四边形、多边形和三维单元形状函数的有限元方法.《基于多元样条插值的有限元方法》内容分为6章.第1章简要介绍了弹性力学有限元方法的基本理论.第2章概述了多元样条方法的基础知识,包括光滑余因子协调法、B网方法.第3章介绍了Ⅱ型三角剖分的平面凸四边形样条
本书不仅详细叙述了拓扑线性空间,包括若干子类局部凸空间、赋范空间、内积空间的公理系统、结构属性及其之上的强弱拓扑、共轭性,还深入论述了该学科离不开的几个专题,即形式上更为一般的三大基本定理与泛函延拓定理,Banach代数特别是Gelfand变换的基本理论,紧算子及其谱理论,自伴算子的谱理论,无界正常算子的谱理论以及Bo
本书讨论偏微分方程在工程技术科学与自然科学中的应用,以傅里叶方法(傅里叶级数、傅里叶变换和拉普拉斯变换)作为讲授的主线,讲授的内容是高级工程数学、自然科学范畴的数学方法中非常重要的部分。
本书系统而全面地介绍复变理论及其在工程问题上的应用,理论与实际应用密切结合,对工程类学科的学生来说,这种方式更生动地表达了数学理论的内涵。
微积分(下册)习题全解与试题选编 (“十三五”普通高等教育应用型规划教材)
本书是实分析课程的教材,被国外众多大学(如斯坦福大学、哈佛大学等)采用。全书分为三部分:第壹部分为实变函数论,介绍一元实变函数的勒贝格测度和勒贝格积分;第二部分为抽象空间,介绍拓扑空间、度量空间、巴拿赫空间和希尔伯特空间;第三部分为一般测度与积分理论,介绍一般度量空间上的积分,以及拓扑、代数和动态结构的一般理论。书中不