《凸优化的分裂收缩算法》以简明统一的方式介绍了用于求解线性约束凸优化问题的分裂收缩算法。我们以变分不等式(VI)和邻近点算法(PPA)为基本工具,构建了求解线性约束凸优化问题的分裂收缩算法统一框架。在该框架中,所有迭代算法的基本步骤包括预测和校正,分裂是指通过求解(往往有闭式解的)的凸优化子问题来实现迭代的预测;收缩指
本书主要涉及高等微积分的知识,对于一些经典结果作了现代化的处理,利用微分流形及微分形式,简明而系统地讨论了多元函数的微积分。全书共5章,包括欧几里得空间上的函数、微分、积分、链上的积分、流形上的积分。内容深入浅出,论证严格而易于理解。高等微积分的部分内容,因为其概念和方法比较复杂,所以在初等水平上难以严格处理,本书专门
本书是世界著名数学家A.H.柯尔莫戈洛夫院士在莫斯科大学数学力学系多年讲授泛函分析教程(曾称《数学分析III》)的基础上编写的。它是关于泛函分析与实变函数论的精细问题的严格的系统阐述,书中反映了作者的教育思想,体现作者丰富的教学经验与方法。内容包括:集合论初步,度量空间与拓扑空间,赋范线性空间与线性拓扑空间,线性泛函与
本书共9部分,包括复数与复变函数、解析函数、复变函数的积分、解析函数的级数表示、留数及其应用、共形映射、傅里叶级数与傅里叶变换、拉普拉斯变换、习题参考答案。
本专著中,主要考虑当系统解的正则性条件比较低的时候,我们尝试构造了守恒的Galerkin谱元算法,并证明了Galerkin谱元算法收敛阶。辛守恒是哈密尔顿系统的一个非常重要的几何性质,目前关于二维哈密尔顿系统的辛算法讨论很少,而且多数辛算法都是隐式的,因此我们以二维薛定谔方程为例,构造Galerkin分裂辛算法。能量耗
本书通过改革和创新,用集合(通过引入各种结构)和映射将传统的“实变函数论”“测度论”和“泛函分析”三门课融合为一门新的“现代分析”基础教程,使之保持了适当的理论深度和较高的学术水平,使读者用较少的时间就能掌握现代分析中最有用的核心内容和方法技巧;同时,本书起点低,只要求读者具有初等微积分和高等代数初步知识,对不同专业和
本书秉持学为中心理念,用一个梦游故事串联了复变函数与积分变换课程的主要知识点,包括复数和复变函数、导数、积分、级数、留数、保形映射、傅里叶变换和拉普拉斯变换等内容。本书模糊了时空概念,强调知识体系所蕴含的科学思想方法、内在逻辑性以及表达的趣味性,本书采用章回体小说的形式,用近乎荒诞的故事和诙谐幽默的语言,解释了复变函数
傅里叶变换在物理学和工程中有着广泛的应用,非常重要.本书简要介绍了傅里叶变换的理论和应用,对物理、电气和电子工程以及计算机科学专业的学生来说很有价值.本书在简要介绍了傅里叶变换的基本思想和原理后,介绍了它在光学、光谱学、电子学和电信等领域的应用,说明其强大功能.本书还介绍了多维傅里叶理论中一些很少被讨论但非常重要的领域
本书以弦弧近似极限微积分为主线,坚持弘扬中华优秀传统数学文化,结合不同时代的应用背景阐述数学概念、数学思想和数学思维的起源与发展,特别是中国古代数学思想和数学成就及其与社会、经济和工程实践的联系。本书分为6章,内容包括:中国古代数学成就,弦弧近似与极限,欧洲数学的兴起与微积分的形成过程,微积分解决实际问题的思想和方法,
本教材根据“101计划”的要求编写。教材的编写基于编者多年的教学经验以及与兄弟院校教师的交流,兼顾了先进性与一定的普适性,注重基础性、思想性以及学科间的融会贯通,精选了例题和习题。全书共二十一章,包含集合与映射、实数、序列极限、函数极限、连续函数、导数