本书主要讲述Sobolev空间的基本理论。全书共7章,第1章介绍连续函数空间和H。lder空间的常用性质,并证明H。lder模内插不等式;第2章详细介绍Lebesgue可积函数空间Lp(Ω)的性质和主要结论;第3章和第4章系统讲述整数阶Sobolev空间的基本性质,并给出嵌入定理、迹定理和Gagliardo-Niren
本书内容来自团队十余年来在谐波平衡类方法理论及其在求解非线性周期解时的应用方面的研究成果。全书共7章:第1章对非线性问题周期解的近似解法进行了概述,将谐波平衡方法亟待解决的混淆问题作为全书的引导;第2~4章从经典Duffing方程入手,基于混淆现象的本质机理,发展了去混淆理论,提出了重构谐波平衡法,彻底解决了混淆问题,
本书聚焦深度学习与非线性动力系统交叉领域,系统阐述深度学习在非线性动力系统求解中的理论方法与实践应用。书中首先梳理随机动力模型、分数阶微积分及深度学习核心算法基础,重点提出改进水库计算(IRC)、混沌控制(RCACF)、分数阶求解(FODS-NAR)三种创新算法,解决Lévy噪声激励系统求解、混沌特性控制及分数阶模型高
本书在前一版的基础上进行了修订,较为系统地介绍了非线性方程组迭代求解的基本理论、方法及其主要算法的MATLAB程序实现.全书共分为7章,内容包括非线性分析理论基础、非线性迭代的基本理论、解非线性方程组的牛顿法、解非线性方程组的LM方法、解非线性方程组的拟牛顿法、解非线性方程组的非精确牛顿法及解互补问题的迭代法.本书既注
本教程是大学数学系一、二年级基础课程“数学分析”的配套习题课教材,分上、下两册。本书是上册,主要讲解实数域的基本理论、数列的极限、一元函数的极限和连续性、一元函数的微分学及其应用,以及一元函数的积分学及其应用等内容典型的、常用的习题解法与技巧,帮助学生夯实基础、深化学习。每堂习题课都以相应章节需要学生重点掌握和比较难掌
本书是在“数字化”时代背景下,为适应经济、管理类专业在大学数学课程教学中的最新需求而编写的一部微积分教材。 本书分上、下两册,上册主要内容包括函数、极限与连续,导数与微分,微分中值定理与导数应用,不定积分,定积分及其应用;下册主要内容包括多元函数微分学,重积分,无穷级数,常微分方程,差分方程。在书中附有若干微视频,包括
本书主要介绍常微分方程的求解问题,内容以常微分方程发展的时间线为导向,共分为六章内容。第一章,微分方程基本概念与基本定理,介绍微分方程的来源与概念;第二章,初等积分法,介绍常微分方程的基本概念以及在微分方程发展初期几类特殊方程的求解方法;第三章,高阶线性微分方程,主要介绍高阶微分方程的解的结构和常系数高阶线性微分方程的
本书是高等院校数学专业高年级及研究生教材。本书主要介绍二阶线性椭圆偏微分方程相关理论,内容包括:调和函数及其性质,格林函数,Laplace方程的可解性,Holder连续空间,Newton位势及其正则性,Poisson方程的可解性,一般线性椭圆算子的极值原理与Schauder理论。通过本教材的讲授,读者可以较为全面地了解
本书是应用型高等学校测控技术与仪器、机械电子工程、电子信息工程、电子信息科学与技术、通信工程等专业本科“复变函数与积分变换”课程的教材,内容包括四部分:第一部分极限和导数(包括第1章复变函数的极限和第2章解析函数)、第二部分积分(包括第3章复变函数的积分)、第三部分级数和留数(包括第4章解析函数的级数和第5章留数)、第
本书分为三大部分。第一部分为“同步练习”,该部分主要包括四个模块,即内容提要、典型例题分析、习题精选和习题详解,旨在帮助读者尽快地掌握微积分课程中的基本内容、基本方法和解题技巧,提高学习效率。第二部分为“模拟试题及详解”,该部分给出了20套模拟试题,其中上、下学期各10套,并给出了详细解答过程,旨在检验读者的学习效果,