本书介绍了复变函数的基本概念、基本理论和方法,包括复数及复平面、复变函数的极限与连续性、复变函数的积分理论、级数理论、留数理论及其应用、保形映射与解析延拓等内容。
本书以奇摄动控制系统为对象,以Kokotovic奇摄动方法为框架,并以输入状态稳定(ISS)概念作为刻画外部干扰的工具,在Tikhonov极限定理的基础上,首先讨论了ISS分析与控制,包括基于状态观察器的控制器设计;其次对具有内部不确定性和外部干扰输入的奇摄动控制系统,分别研究了相应鲁棒ISS稳定与镇定;然后分别讨论了
本书引进的改进傅里叶级数,是在闭区间上可以一致收敛地逼近任意形式的拟光滑函数的级数。本书给出了:变系数线性常微分方程的通用求解方法(这里变系数可以是连续函数,也可以是间断的函数);对具有各阶奇异点的奇异性方程(正则或非正则)给出了求解的原则;对几种常见的奇异常微分方程给出了详尽的求解过程和计算算例;完满地求解了两个典型
整数剩余类环上导出序列,主要介绍环上线性递归序列基础理论、本原序列的权位压缩导出序列的保熵性和模2压缩导出序列的保熵性;第二部分是带进位反馈移位寄存器(FCSR)序列,主要介绍FCSR序列算术表示、有理逼近算法和极大周期FCSR序列的密码性质;第三部分是非线性反馈移位寄存器(NFSR)序列,主要介绍NFSR序列簇的线性
自1998年PT对称量子力学(非经典量子力学)被提出以来,逐步激发了人们对有关PT对称理论和实验方面的广泛关注.作者自2007年开始研究PT对称相关的问题,本书的主要内容源于作者的部分研究成果.本书主要阐述PT对称理论、方法及其在线性和非线性波方程中的应用,主要针对具有物理意义的不同复值PT对称势,研究非厄米Hamil
本书旨在巩固数学分析基础知识,补充数学分析中的一些重要方法,提高分析数学问题的思维能力和灵活运用多种知识解决问题的能力。基本框架为:对数学分析的一些重要知识点进行回顾和梳理;介绍一些重要的方法,特别是阶的估计的方法和思想;通过一些考研、竞赛试题等进行解题思路分析,对方法进行应用和强化,注重方法上的分析和讲解。内容包括极
本书总结了近年来作者在常微分方程边值问题和定性理论方面的部分研究成果,共九章。第1-6章利用Leray-Schauder度、迭合度理论、锥上不动点理论、上下解方法、**值原理和单调迭代技巧研究了非线性常微分方程、时标动力方程非局部边值问题的可解性、正解的存在性和多解性以及解的收敛性。第7-9章主要介绍种群动力系统中离散
信念修正是人工智能的研究分支之一。在哲学、认知心理学和数据库更新等领域中,很早就有对信念修正的讨论和研究。AGM公设在20世纪70年代末被提出,它是任何一个合理的信念修正算子应该满足的最基本条件。本书作者李未院士在20世纪80年代中期提出了R-演算,这是一个满足AGM公设、非单调的并且类似于Gentzen推理系统的信念
许多人在中学数学课堂上学习过“微积分”。《BR》微积分是用来计算“变化”的数学,在计算如位置的变化、速度的变化、股价的变化等多种变化时,微积分发挥着重要作用,甚至可以说微积分几乎是不可或缺的。《BR》本书在第1章中,对微积分的精髓进行了精要讲解。在接下来的第2章中,追溯微积分诞生的时代背景及数学家的思考,探究复杂的微积
本书主要介绍常微分方程的初等积分法、基本理论、定性和稳定性理论的基本内容具体包括常微分方程的初等解法、解的存在唯一性定理、高阶微分方程、线性微分方程组、定性和稳定性理论初步等本书各节配有习题并附参考答案,个别习题还有提示,书末附录介绍了Maple在常微分方程中的应用本书可作为高等学校数学专业常微分方程课程的教学用
《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书
本书是分数阶系统与高阶逻辑形式化验证的基础理论研究著作。分数阶系统是建立在分数阶微积分方程理论上实际系统的数学模型。分数阶微积分方程是扩展传统微积分学的一种直接方式,即允许微积分方程中对函数的阶次选择分数,而不仅是现有的整数。分数阶微积分不仅为系统科学提供了一个新的数学工具,它的广泛应用也表明了实际系统动态过程本质上是
本书内容包括偏微分方程的基本概念,数学物理方程相关的背景,数学模型的建立与定解问题,定解问题的典型求解方法(求通解方法、行波法、分离变量法、积分变换法、格林函数法以及数值求解法)。另外还介绍了勒让德多项式、球函数和贝塞尔函数在求解定解问题时的应用。
本书共分为6章,主要内容包括线性正则变换背景简介、线性正则变换的定义与基本原理、二维线性正则变换理论及其应用、线性正则变换域的时频分析、线性正则变换域雷达信号的参数估计、线性正则变换在ISAR成像中的应用。
本书基于高阶约束流、Hamilton结构及Sato理论提出了构造孤立子系统的Rosochatius形变、Kupershmidt形变、带源形变以及扩展的高维可积系统的一般方法,并以光纤通信及流体力学中的重要模型,如超短脉冲方程、Hirota-方程、Camassa-Holm型方程及q-形变的KP方程等为例详细阐述了我们提出
本书根据数学分析课程知识点的正常教学顺序设计,共六十讲。主要通过极限、实数基本定理、微积分和无穷级数等教学内容介绍数学分析中的思想方法。书中内容既有细致到具体小知识点的思想方法,也有覆盖到数学分析大知识体系的思想方法。通过这些基本思想方法的讲解,使读者能够在较短时间内掌握数学分析思想,对数学分析内容有深刻的理解,也可以
本书研究了非线性算子不动点问题迭代逼近的收敛算法。这些算法包括相同空间下的一些非线性算子不动点问题的迭代序列,也包括不同空间下一些非线性算子不动点分裂问题的迭代序列,并在合适的条件下验证了这些算法具有强收敛或者弱收敛性。书中给出了许多非常初等的例子,并通过这些例子说明一些非线性算子的关系、有界线性算子范数的计算等,使得
近年来,在图像处理与强度可调辐射疗法的实际应用背景下,分裂可行性问题成为近期非线性分析的研究热点之一。本专著从三个方面研究分裂可行性问题与广义分裂可行性问题(分裂公共不动点问题、分裂变分不等式问题和分裂公共零点问题)解的迭代逼近。主要体现在新算法设计、空间扩展和参数减弱限制条件等方面。对于丰富和扩展分裂可行性问题相关理
本书详细介绍小波变换的起源、原理和应用,内容覆盖傅里叶变换、窗口傅里叶变换、框架理论、连续小波变换、多分辨率分析、Daubechies正交小波、小波包、小波提升理论以及小波在信号处理和图像处理等方面的应用,涵盖了发展比较成熟的小波分析的所有基本内容。另外,本书特别关注实际应用和数学理论之间的关联,强调解决实际问题中的数
本书主要讨论无穷维Hamilton系统,旨在用现代非线性分析的框架研究无穷维Hamilton系统。本书先介绍无穷维Hamilton系统的定义和性质,同时选取现代非线性分析中的常见问题为例解释其应用。我们采用变分的方法,建立统一的变分框架并且发展一些抽象的临界点理论来处理无穷维Hamilton系统。特别地,对于量子理论中