随机动力系统理论是动力系统领域研究的重要新方向。本书系统讲述几种典型的随机过程及其相应的随机积分的定义和性质,比较不同随机积分的异同,系统建立了高斯过程、分数布朗运动、Levy过程和梯度噪声等驱动的随机常微分方程、随机偏微分方程解的生成的随机动力系统(含多值随机动力系统),详细给出了随机吸引子、测度吸引子、随机惯性流形
本书全面系统地论述微分方程的分析力学方法,包括微分方程的力学化、降阶法、Hamilton-Jacobi方法、Poisson方法、Noether方法、Hojman方法、场方法、势积分方法、共形不变性等。
本书内容涉及Linlcwood.Palcy理论及其在流体动力学方程中的应用两大部分.其一包含了频率空间的局部化、Besov~lhqflOLittlewood—Paley刻画、Bony的仿积分解及仿线性化技术、新型的Bernstein不等式等.其二在Littlcwood—Palcv理论的框架下,建立输运扩散方程解的时空正
《普通高等教育“十一五”国家级规划教材:数学物理方程(第2版)》根据编者在中国科学技术大学多年的教学经验编写而成,通过对三类典型方程的讨论,介绍求解偏微分方程定解问题的通解法,分离变量法,积分变换法,基本解方法和变分方法,以及相关的固有值问题,特殊函数和广义函数简介。《普通高等教育"十一五"国家级规划教材:数学物理方程
本书分为三册。第一册分为6章,内容包括:实数、函数、极限论、连续函数、微积分(一)、微积分(二)、不定积分;第二册分为6章,内容包括:定积分、反常积分、常数项级数、函数项级数、幂级数、Taylor级数、Fourier级数;第三册分为8章,内容包括:多元函数的极限与连续性、多元函数的微分学、隐函数存在定理、一般极值与条件
本书主要介绍了复变函数的一些基础知识,其中主要包括解析函数,亚纯函数以及共形映射的基本概念。另外,我们介绍了对数函数与根式函数的多值函数,对解析函数,亚纯函数的基本性质,本书着重进行了阐述。
《奇异摄动边界层和内层理论》可供数学、力学、物理学以及其他学科和工程技术方面的研究人员、高等院校教师、本科高年级学生和研究生阅读。
本书共9章。前3章介绍Walsh函数、Haar函数、正交样条函数,第4章与第5章分别介绍U-系统与V-系统;第6章谈三角域上非连续正交函数的构造;后3章以数字几何与数字图像处理中的实际问题为背景,详细阐述利用U、V-系统的解决途径。
赵爱民和李美丽等编著的《微分方程基本理论》是在作者多年主讲研究生“微分方程基本理论”课程讲稿的基础上整理而成的。主要内容包括绪论(解的存在性、唯一性及对初值与参数的光滑依赖性)、边值问题和Sturm比较理论、稳定性理论基础、定性理论基础、平面分支理论初步和算子半群与发展方程理论基础等,绝大部分章节都配有适量且难易兼顾的
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。叶其孝、李正元、王明新、吴雅萍编著的《反应扩散方程引论(第2版)》详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读
《工科数学分析教程(上)》将微积分经典内容进行拓展与延伸,力求反映当代数学的发展趋势,为此引入了分支与混沌、分数阶傅里叶变换与小波变换等内容。与传统的数学分析教材不同,本书设置了系列探索类问题,目的是培养学生的开放式思维和独立思考问题的能力。根据信息化背景下对人才的要求,本书内容与计算机和信息技术相结合,增加了非线性方
本书第一版入选“十二五”普通高等教育本科国家级规划教材,获得2015陕西普通高等学校优秀教材一等奖,这次改版做了全面修订。本书与通常的数学分析和高等数学教材无缝衔接、浑然一体,实为其有关内容的自然延伸、拓展、深化和补充,也包含作者的一些教研成果。不少内容是其他书上没有的。内容新而不偏、深而不难、方法简便,易学好用,能使
这本《复变函数与积分变换》由杨降龙和杨帆主编,根据教育部“复变函数与积分变换”非数学类课程的教学基本要求编写而成,主要内容有:复数与复变函数、解析函数、复变函数的积分、级数、留数、共形映射、Fourier变换和Laplace变换。本书从应用型本科学生的实际出发,对基本概念的引入尽量采用启发式的方法,力求理论高度不降低、
本书是江西省高校精品课程“微积分”的配套教材。本书主要包括了函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,二元函数微积分,微分方程与差分方程,无穷级数,微积分学中的数学实验,微积分学中的数学模型共10章内容。每章有习题,书末附有考研模拟试题及答案。本书结构清晰,逻辑关系清楚,内容由浅人
Partialdifferentialequationsarefundamentaltothemodelingofnaturalphenomena,arisingineveryfieldofscience.Consequently,thedesiretounderstandthesolutionsoftheseequa
《脉冲微分方程理论及其应用》系统介绍了脉冲微分方程的有关理论及其在生命科学中的重要应用.《脉冲微分方程理论及其应用》分为两部分:第一部分主要介绍脉冲微分系统基本理论、脉冲微分系统稳定性以及周期脉冲微分系统;第二部分主要介绍脉冲种群动力系统、具有脉冲效应的传染病动力学模型和具有脉冲输入和输出的微生物模型.《脉冲微分方程理
《数学分析》(上下)(第2版)是南开大学数学系老师在多年教学经验的基础上编写而成的,是一本大学数学系基础课程的教材。《数学分析》(上下)(第2版)分上、下两册,介绍了数学分析的基本内容.上册内容主要包括实数与函数、极限、连续函数、导数及其应用、不定积分、定积分及其应用、数项级数、广义积分、函数项级数;下册内容主要包括多
《banach空间几何理论及应用》介绍banach空间几何理论及其在不动点理论的应用.全书分为5章.在介绍一些banach空间的基本知识、banach空间的弱拓扑与自反性的基础上,一方面叙述banach空间几何理论的基本内容,特别讲述了与不动点有关的各种几何性、banach空间中的各种模和几何常数,同时给出了其在不动点
《线性算子理论》是著名波兰数学家S.Banach的经典著作TheoriedesOperationsLineaires的中译本,并包括A.Pelczynski和Cz.Bessaga的综合报告:Banach空间现代理论的某些方面。主要介绍Banaeh空间中的线性算子理论及相关问题,它是泛函分析的重要组成部分。《线性算子理论
《常微分方程及其应用(第2版)》是常微分方程理论、方法与应用有机结合的一本教材,保持了我国现行教材理论性强、方法多样、技巧和实例丰富等特点。并结合国外教材强调建模、应用和计算机等特点,形成理论、方法、建模、应用、计算机互相渗透与补充的新体系。不仅能够训练学生严密的数学思维方式,而且可以引导学生通过建立数学模型解决实际问