本书系统阐述了逆问题求解的贝叶斯框架原理、方法及其应用。全书分为4个部分,共计14章,主要内容包括逆问题与不适定问题描述、正则化方法、基于概率框架的逆问题求解、解卷积方法、逆问题求解的高级进阶方法以及逆问题在超声波无损检测、大气湍流光学成像、衍射层析、低强度数据成像等领域中的典型应用。
本书以非线性可积系统作为研究对象,以符号计算系统Maple为主要工具,从新的观点出发,对非线性系统求解方法进行深入研究,提供了一些求解非线性系统特别是高维非线性系统的有效方法,主要在孤子理论经典方法的基础上,以目前广泛关注的非线性可积系统为例,扩展原有方法或构建新方法,重点演示了非线性波包括孤子、呼吸子、团块波和怪波的有效求解算法。
本书系统地总结了数学分析的基本知识、基本理论、基本方法和解题技巧,收集了具有代表性的题目,介绍了数学分析的解题思路和解题方法。全书共15章,内容包括:实数与函数、极限、函数的连续性、导数与微分、一元函数不定积分等。