《微反应系统内无机卤化钙钛矿纳米晶的制备研究》围绕微反应器内钙钛矿纳米晶的规模化制备、稳定性提升、生长规律探究等方面展开论述,通过设计搭建液滴流微反应器平台、优化前驱体与配体用量,实现了铅基卤化钙钛矿纳米晶的高产率制备。借助配体工程,获得在空气、极性溶剂和高温下稳定的钙钛矿纳米晶。在液滴流微反应器的基础上,通过模块升级搭建具有在线检测功能与远程控制功能的微反应系统,并围绕铋基卤化钙钛矿的制备展开初步探究。《微反应系统内无机卤化钙钛矿纳米晶的制备研究》可供化学工程与材料科学领域的高等院校师生和科研
本书阐述了利用简单化学还原法通过改变保护剂与反应条件制备几种荧光铜纳米团簇的过程,并研究了所制备的荧光铜纳米团簇的性能、荧光猝灭机理以及在实际样品检测中的应用。
本书介绍了作者团队近年来在纳米层状二硫化钼“氧化插层-爆炸/还原”和锂离子插层剥离新技术及其合成机理方面的研究工作。团队系统研究了纳米层状二硫化钼的可控制备,解决了其剥离效率低的难题,建立了二硫化钼氧化插层分子结构演变模型,揭示了插层二硫化钼爆炸及还原剥离机理,并提出了高密度催化位点、高电荷转移效率协同提高催化析氢性能新方法。本书共6章,内容包括:纳米层状二硫化钼材料研究进展和发展趋势、插层-爆炸法剥离制备纳米层状二硫化钼、插层-还原法剥离制备纳米层状二硫化钼、纳米层状二硫化钼复合材料电催化析氢
本专著系统研究了石墨烯在水泥基体中的分散性,并利用石墨烯的高导热性及增强基体能力,降低因温度和湿度因素引起的收缩应力,提升水泥基体的抗裂性,旨在降低早期收缩伴随的裂缝损伤,提高水泥混凝土的服役寿命。在本专著中,针对水泥混凝土收缩开裂的现象,首先研究了石墨烯在水泥基体中的分散性,掌握了均匀分散石墨烯的方法,并建立了其空间分散的表征方法。进而,利用石墨烯的高导热性,使混凝土硬化浆体保持温变均匀,降低温差应力,提升水泥基体的抗裂性。此外,揭示了石墨烯改性水泥材料的微观机理,并基于石墨烯增强水泥基体能力
本书聚焦环境催化与污染控制中光/热环境催化材料与应用,从光/热催化基础、光/热催化环境净化反应器、光催化处理VOCs、热催化处理VOCs、光热协同催化材料的合成与应用、光催化处理水体有机污染物、光催化处理水体重金属离子、有机污染物和重金属离子协同处理、CO2光热资源化催化转化、精细化工园区VOCs排放量消减技术路线、光/热催化环境净化展望等方面系统阐述。
基于纳米酶具有合成简便、稳定性好、催化活性易调控以及适用范围广等优势,本书从纳米酶的发现、发展,纳米酶的催化活性,所表现的过氧化物酶纳米酶、超氧化物歧化酶纳米酶、过氧化氢酶纳米酶、氧化酶纳米酶、水解酶纳米酶、碳基纳米酶及酶活性调控策略等,进行详细介绍,同时,总结了过渡金属基、贵金属基及碳基纳米酶表现的纳米酶活性的研究现状,并介绍了纳米酶在检测传感、新型抗菌剂及治疗药物等方面的应用。 本书主要适于从事环境、食品、医药、生物、烟草等行业分析检测的技术人员阅读,也可作为高等学校相关专业研究生和本科生的
《液相激光烧蚀及其纳米材料制备应用》介绍一种*特的纳米制备技术即液相激光烧蚀(laserablationinliquids,LAL)技术,以及其纳米材料制备的应用。LAL技术的优点表现在:①化学上“简单、干净”,不需要任何催化剂,属于绿色合成,可以在温和环境中进行诸如高温高压相等亚稳相纳米材料制备;②特殊的反应空间使得合成的纳米材料的组分来自固体和液体,为科学家基于基础或应用的需求所合成的纳米材料进行组分设计提供了可能;③可以通过调节激光参数、液体种类和靶材,对制备的纳米材料的尺寸、形貌、结构等
利用纳米技术使丰富多彩的生物质资源实现功能化应用是当今科研领域的研究热点。本书集中反映作者及课题组成员多年来在菌丝基纳米功能材料制备及应用方面研究的数据和成果,主要涉及菌丝的生物及物理化学特性,菌丝基纳米功能材料生长组装策略、形貌结构,以及其在吸附、催化、能量转换与存储方面的应用基础研究。
本书为“低维材料与器件丛书”之一。本书基于作者在石墨烯领域多年研究成果的积累,并结合国内外最新的研究进展,围绕化学气相沉积石墨烯这一主线,系统全面地介绍了石墨烯的化学气相沉积生长方法与机制、控制生长、结构特征、独特性质以及典型器件应用,并在深入剖析现有问题与挑战的基础上展望了研究趋势和发展前景。全书共7章,涵盖了该领域的基础知识和研究前沿。
本书介绍纳米尺度下材料生长与相变及纳米材料表(界)面能的热力学理论,统称为“纳米热力学理论”,主要包括:发展了普适性的纳米结构表(界)面能的热力学解析表达,揭示了由表(界)面诱导的系列纳米尺度效应;发展了普适性的纳米尺度下亚稳相生长与相变的热力学理论并应用于典型亚稳相如金刚石合成,澄清了若干在亚稳材料制备中长期有争议的基本科学问题;将发展的纳米热力学理论拓展到多种维数纳米结构生长并应用于纳米材料生长的理论设计,为材料科学家跨过“炒菜”方式的制备研究,有目的地探索新纳米材料提供了理论工具。