《数值分析》介绍了科学与工程计算中常用的数值计算方法及相关理论。内容包括解线性方程组的直接法和迭代法、插值法、函数最优逼近、数值微积分、非线性方程(组)的迭代解法、矩阵特征值和特征向量的计算、常微分与偏微分方程数值解法等。其中包含了一些在实际中有重要应用的新方法,如求解超定方程组的最小二乘法、求解线性方程组的基于伽辽金
这本《计算方法》由何满喜和曹飞龙编著,根据普通高等理工科院校“计算方法”和“数值分析”课程的教学大纲编写而成,重点介绍计算机上常用的典型计算方法和基本理论。主要内容包括数值计算中的误差分析、线性方程组与非线性方程组的解法、矩阵特征值与特征向量的计算、非线性方程求根的方法、数值逼近的插值法与数据拟合法、数值积分与数值微分
本书讲述结构分析中的有限单元法的基本原理、程序设计和航空结构有限元分析建模技术。基础理论部分主要介绍杆系结构、平面问题、空间问题和等参数单元,重点是有限元法的基本原理及表达格式的建立途径,单元插值函数和特性矩阵的构造及不同单元特性的比较;程序部分结合二维问题静力分析算例,讨论了有限元结构分析的流程、数据结构、算法及其C
《数值分析与科学计算》系统地介绍了数值分析的有关内容,共十章.内容包括:误差:非线性方程求根;线性方程组的数值解法;解线性代数方程组的迭代法;非线性方程组数值解与最优化方法;插值方法;数据拟合与函数逼近;数值积分和数值微分;常微分方程的数值解;矩阵特征值与特征向量的计算.本书的最大特色是在书中增加了科学计算与matla
《“211”大学数学创新课改教材:常微分方程及Maple应用》是常微分方程的基本理论方法与数学软件应用相结合的教材。教材以传统的经典内容为主,但考虑学科的发展方向和国际上同类教科书的选材趋势,因而还包括数值解、边值问题、分支和混沌,以及数学软件应用等非传统内容。
《计算方法简明教程》着重介绍了能够在计算机上得以实现的一些数值解法。主要包括一元与二元函数代数插值,样条函数插值;正交多项式及其应用,函数的最佳一致逼近与最佳平方逼近;数值积分及应用;线性代数方程组的直接解法与迭代解法;非线性方程和方程组的迭代方法;矩阵特征值与特征向量的计算:常微分方程初值问题的数值解法;偏微分方程初
《数学软件与数学实验(第2版)》第二版是编者根据在第一版教学实践中所积累的经验修改而成的。《数学软件与数学实验(第2版)》讨论了Matlab和Lingo两个软件,前一部分讲述了Matlab软件及使用该软件完成的数学实验,后一部分讲述了Lingo软件及其在解决优化问题上的应用,书末附有Matlab的统计计算命令,以方便读
《最优化方法及其Matlab程序设计》较系统地介绍了非线性最优化问题的基本理论和算法,以及主要算法的Matlab程序设计,主要内容包括(精确或非精确)线搜索技术、最速下降法与(修正)牛顿法、共轭梯度法、拟牛顿法、信赖域方法、非线性最小二乘问题的解法、约束优化问题的最优性条件、罚函数法、可行方向法、二次规划问题的解法、序
《数值计算方法》介绍数值计算方法的研究对象、内容和特点,主要内容为误差理论、方程求根、线性方程组的数值方法、矩阵的特征值与特征向量问题、代数插值、数据拟合与函数逼近、数值积分与数值微分、常微分方程数值解法、偏微分方程的数值解法和数值试验.每章都配有一定量的习题,书末附有答案。
《数值最优化算法与理论(第2版)》较为系统地介绍最优化领域中比较成熟的基本理论与方法。基本理论包括最优化问题解的必要条件和充分条件以及各种算法的收敛性理论。介绍的算法有:无约束问题的最速下降法、Newton法、拟Newton法、共轭梯度法、信赖域算法和直接法;非线性方程组和最小二乘问题的Newton法和拟Newton法