《微积分(经管类)》根据教育部高等学校数学与统计学教学指导委员会制定的经济管理类本科专业《微积分》课程的教学基本要求,结合作者多年在微积分课程的教学实践与教学改革所积累的教学经验,并借鉴国内外同类教材的精华编写而成。《微积分(经管类)》共11章,内容包括:函数、极限与连续、导数与微分、微分中值定理与导数应用、不定积分、
本书系统讲述实变函数的基本理论,包括集合论的基本概念、欧几里得空间的拓扑性质与连续函数的基本性质、点集的测度与可测函数、Lebesgue积分理论以及微积分基本定理。
本书利用映射方法系统论述广义度量空间的基本理论,总结了20世纪的年代以来空间与映射理论的重要研究成果,特别包含了国内学者的研究工作,内容包括广义度量空间的产生、度量空间的映象和广义度量空间类等。
本书共5章:第1章介绍面型与点型奇异积分(包括弱奇异、Cauchy强奇异、Hadamard超奇异积分)的概念与存在条件及一些基本性质,并介绍各类奇异积分算子的定义和基本性质;第2章简略介绍正常积分的数值方法和加速收敛方法;第3章主要论述一维各类奇异积分与含参数的奇异积分的高精度算法以及各类奇异积分的加速收敛方法,同时给
本书涉及到随机分数阶偏微分方程及其随机动力学的主要研究方法和最新研究成果,介绍了分数阶微积分基础、分数阶常、偏微分方程的物理背景及随机动力系统基础,系统地总结了几类重要的流体力学中时间分数阶随机分数阶偏微分方程、空间分数阶随机偏微分方程、以及时间和空间均为分数阶随机偏微分方程,如分数阶Boussinesq方程、二维分数
本节阐述微分动力系统的基本理论,侧重于结构稳定性问题。《微分动力系统原理》所介绍的材料达到一定深度,叙述详尽细致,深入浅出。《微分动力系统原理》可供大学数学系高年级学生、研究生、教师和有关的科学工作者参考。
本书为《中国科学技术大学数学教学丛书》之一,是与本套丛书中的《微积分》(上、下)相匹配的学习辅导书,基本上按照其章节逐一对应编写.每节包括学习要点、解题方法和例题分析三部分,通过对大量典型例题的分析和求解,揭示微积分的解题方法、解题规律和技巧。本书可作为理工科院校本科生学习微积分的学习辅导书以及微积分习题课的参考书,也
《微积分》分上、下两册,本书为上册。上册包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分和定积分等内容。书中例题、习题较多,除每节配有习题外,在每章最后都配有适量的总习题,分为A、B两类,其中A类为基本题,B类是提高题。书末附有部分习题答案与提示。
编写本书有三个主要目标:**,为高校数学专业学生学习《数学分析》这门主干基础课提供辅助教材;第二,为高校数学专业学生提供考研备考辅导;第三,为高校教师和科研人员提供参考资料。本书正是本着这三个目标,结合学生实际及编者多年从事数学分析和分析方法选讲教学经验基础上编写成。全书分为八讲,选题均来自于经典的数学分析教材教辅资料
《数和数列》共分21讲,由浅人深,系统介绍了数、数列和初等数论的知识及数论学家的故事,讨论了中学生需要掌握的复数、数学归纳法、等差数列、等比数列、组合数与二项式定理,参加数学竞赛需要掌握的取整函数与抽屉原理、数的整除与一次不定方程、算术基本定理及其应用、中国剩余定理、Fermat小定理与Wilson定理、Euler函数