本书是以高等院校高等数学本科课程教学大纲为依据,以高等数学中的重难点概念、性质分析为基础,以启发学生创新、创造思维为任务,以开阔学生视野,丰富学生的知识结构,培养学生的科学精神为目的编写而成。本书着眼素质教育,注重数学内容、思维之间的内在联系,条理、结构、脉络清晰,注重培养学生数学思维能力,加强课程思政。在教材内容选取
多变量基本超几何级数,由于它的产生具有深刻的根系统的代数表示论背景,亦称伴随根系统基本超几何级数。本书是作者结合自己的长期研究,系统介绍多变量基本超几何级数研究领域的主要理论、方法及其应用的著作。全书共十二章,内容包括单变量基本超几何级数的基本理论及经典结果、多变量基本超几何级数的引入与分类、求和与变换公式、U(n+1
该书共5章,分别介绍有限元和混合有限元理论基础及其应用。最精彩的是第4和第5章,详细介绍非定常偏微分方程有限元法中的有限元空间和有限元未知解系数向量的降维方法,可将含数十万乃至上千万未知量的有限元迭代方程降阶成为只有很少几个未知量的降阶方程,理论和数值例子都证明了两种降维方法的正确性和有效性。这些降维方法都是作者原创性
保持问题是算子代数和算子理论交叉领域中的重要课题之一.本书共6章,第1章介绍书中涉及的算子代数和算子理论预备知识;第2章给出几类保持相似性的线性映射的刻画;第3章研究Banach空间有界线性算子构成的代数上保持相似性的非线性映射;第4章刻画套代数上的Jordan同态;第5章研究保持几类正交性的线性映射;第6章给出保持算
《数学建模与实践》是基于作者多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关书籍的丰富经验编写而成的。本书是作者对《数学建模》一书的修订,除保留了前三版的大部分内容外,根据读者的反馈进行了补充与修订,尤其在第5章增加了求解实际问题的MATLAB程序设计。全书分为入门篇和进阶篇。入门篇内容包括数学模
主要内容包括:向量代数,线性方程组,矩阵代数,行列式及特征值与特征向量及实对称矩阵与二次型等内容;每章开始给出与本章内容相关的历史发展进程,针对相应知识点给出几何及工程实际应用案例,其中工程实际应用案例主要以不同应用领域的具体问题为驱动,利用相关基本知识进行建模与分析,提供应用线性代数知识解决实际问题的思想,并对重点问
内在现代数学的观点下,将代数与几何这两大领域,融合起来教学和学习,会帮助我们从本质上更好地理解它们,并产生更多方法。本书的特色是让代数与几何融为一个整体,力求做到“代数为几何提供研究工具,几何为代数提供直观背景”,让读者从代数“抽象的”高度,理解高维几何的意义。全书分为上、下两册。本书为上册,内容包括线性方程组与矩阵、
数学来源于生活也高于生活,却高于生活太多到现代人无法触及。一方面,古代先哲和数学家们面对的生活问题已经不再是我们的生活问题,比如丈量土地和攻城掠寨;而我们要面对的锅瓦瓢盆,却是他们不曾想过的问题,比如地铁、找对象难题等。另一方面,数学已经发展到体系、宽度和深度都超越一般人想象力能达到的程度,不屑于解决我们普通人要面对的
本书是编者结合长期在教学第一线积累的丰富教学经验编写而成。全书共11章,内容包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、多元函数微分学、二重积分、无穷级数、微分方程、差分方程。本书按节配置适量习题,每章配有总习题。每章末通过二维码链接知识点总结和典型问题选讲视频。书末链接部分