凸分析的主要研究对象是欧氏空间中的凸集合和凸函数,以锥、次微分和对偶理论为核心,建立了优化问题的最优性条件,并构建了现代非光滑和变分分析的基础.本书共分三章:第1章主要介绍相关的基本概念和工具,包括欧氏空间、拓展实值函数、函数半连续性、包算子、仿射映射等;第2章聚焦于凸集和凸锥以及各自诱导的包算子,主要内容包括凸包、相
数学分析(一二三)(第二版)
本书针对工程硕士研究生的特点和创新型人才培养的要求,将矩阵论、数值分析和规划数学中应用非常广泛的最优化问题按学生容易接受的内容体系进行编写.全书共12章,其内容依次为初等变换与线性方程组的直接解法、线性空间、赋范线性空间与内积空间、线性映射、矩阵的若尔当标准形与矩阵函数、线性方程组的求解方法、非线性方程(组)的解法、最
本书在Hopf代数表示范畴层面引入一些新的monoidal不变量,这些不变量包括表示范畴的Green环、Casimir数、高阶Frobenius-Schur指标、Grothendieck环、某种类型的多元齐次多项式等。著作主要研究这些不变量在Hopf代数表示理论中所发挥的作用,揭示这些不变量与Hopf代数表示范畴中其它
《线性代数习题详解与提高》是北京建筑大学数学系编写的《线性代数》(2019版)的配套教材。本书对《线性代数》各章知识进行了梳理和总结,包括知识脉络图、知识要点和学习要求;对各章的习题和复习题做了详尽的解答;同时,为满足学有余力的读者的需要,还补充了“常见题型”部分,其中不乏考研真题,这部分题目在难度和解题技巧方面都有进
《几何原本》是古希腊数学家欧几里得的一部不朽之作,被誉为史上zui成功的教科书,牛顿、爱因斯坦、丘成桐等科学家对其推崇备至,曾国藩、徐光启、余世存等名人对其盛赞有加。 《几何原本》的最大成就及其伟大意义在于它用公理方法建立起演绎数学体系的最早典范,其对数学发展的影响超过了任何其他著作。 《几何原本》自问世之日起,在长达
本书重点论述微分几何与共轭…面原理在齿轮啮合传动与运动分析方面的应用。首先以矢量函数…线论与…面论为基础,拓展了密切…面、等距…面、…率并矢等内容,丰富了典型…线与…面的应用实例;然后概括了共轭…面运动的两类特征函数与特征矢量,围绕共轭…面的整体几何与微分几何论述了空间…面运动的形成原理、模型构建与分析方法;最后以弧齿
自1998年PT对称量子力学(非经典量子力学)被提出以来,逐步激发了人们对有关PT对称理论和实验方面的广泛关注.作者自2007年开始研究PT对称相关的问题,本书的主要内容源于作者的部分研究成果.本书主要阐述PT对称理论、方法及其在线性和非线性波方程中的应用,主要针对具有物理意义的不同复值PT对称势,研究非厄米Hamil
本书以奇摄动控制系统为对象,以Kokotovic奇摄动方法为框架,并以输入状态稳定(ISS)概念作为刻画外部干扰的工具,在Tikhonov极限定理的基础上,首先讨论了ISS分析与控制,包括基于状态观察器的控制器设计;其次对具有内部不确定性和外部干扰输入的奇摄动控制系统,分别研究了相应鲁棒ISS稳定与镇定;然后分别讨论了
《矩阵特征值定位理论》较为全面、系统地介绍了矩阵特征值定位的基本理论、方法及其相关问题.《矩阵特征值定位理论》共五章,包括预备知识、Ger.gorin圆盘定理与严格对角占优矩阵、Brauer卵形定理与双严格对角占优矩阵、几类结构矩阵的特征值定位与估计(包括非负矩阵谱半径的估计、随机矩阵非1特征值的定位与估计、Toepl