本书主要讲述数学是中国古代科学中一门重要学科,其发展源远流长,并且成就辉煌。现在的我们不仅要了解先进的西方科学技术和科学理念,更要了解我们祖先在数学上的杰出成就以及对世界科学技术进步作出的贡献。我们不仅要学习历代古人孜孜不倦、用于克难的精神,也要学习他们在数学研究中展现出来的种种智慧和巧思。
《高等数学习题全解与学习指导》分上、下两册。下册内容为向量与空间解析几何,多元函数微分学,多元函数积分学,无穷级数配套习题讲解。书中各章节的主要内容都配有精心选取的例题和习题,着重训练读者对定义与概念的理解、对定理与方法的应变能力,培养读者解决问题的逻辑思维方法和创新能力。
《数学实验》主要讲述工程和科学计算中常用的数学实验以及基于MATLAB的实现.《数学实验》分为5章,共17个实验.主要内容包括微积分基础理论知识的数值验证,常见数的探索,矩阵运算、迭代法等代数运算的数值实现,常微分方程相关问题的数值验证,概率统计实验的数值验证等.附录部分介绍了MATLAB基础.《数学实验》突出数学类专
本书内容包括:行列式、矩阵、线性方程组与向量组的线性相关性、相似矩阵与二次型、线性空间与线性变换、数学软件Matlab简介与上机实验,书末附有常用“线性代数”英文专业词汇及部分习题参考答案与提示。
今天的生活以一种不可思议的方式飞速地改变着,越来越多的新方式中出现并影响着我们的生活,而这背后数学扮演者越来越重要的角色。本书从生活哲学中的数学、古代生活中的数学、日常生活中的数学以及现代生活中的数学四个部分,将生活正隐藏着的数学道理娓娓道来。在琐碎繁复的日常生活中,我们会遇到林林总总各种问题。本书引导读者学习数学思维
中国科学院数学研究所一批中青年学者发起组织了数学所讲座,介绍现代数学的重要内容及其思想、方法,旨在开阔视野,增进交流,提高数学修养.本书的文章系根据2019年数学所讲座的8个报告中的7个报告,按报告的时间顺序排序.具体内容包括:Hecke代数简史,Fourier与Fourier分析,高维黎曼问题,丢番图问题、算术几何与
本书旨在巩固数学分析基础知识,补充数学分析中的一些重要方法,提高分析数学问题的思维能力和灵活运用多种知识解决问题的能力。基本框架为:对数学分析的一些重要知识点进行回顾和梳理;介绍一些重要的方法,特别是阶的估计的方法和思想;通过一些考研、竞赛试题等进行解题思路分析,对方法进行应用和强化,注重方法上的分析和讲解。内容包括极
组合数学的研究对象是有限或可数的离散结构或模式,其目标之一就是在给定的准则下对结构或模式进行计数和枚举.因此,组合数学属于离散数学的范畴,是算法科学的数学基础.本书主要介绍组合计数技术,共八章,内容安排上紧紧围绕组合数学中三大计数技术——母函数、容斥原理和Pólya计数理论展开,具体包括基本计数技术、母函数及其应用、递
本书总结了近年来作者在常微分方程边值问题和定性理论方面的部分研究成果,共九章。第1-6章利用Leray-Schauder度、迭合度理论、锥上不动点理论、上下解方法、**值原理和单调迭代技巧研究了非线性常微分方程、时标动力方程非局部边值问题的可解性、正解的存在性和多解性以及解的收敛性。第7-9章主要介绍种群动力系统中离散
《圆锥曲线论》将圆锥曲线的性质网罗殆尽,把综合几何发展到最高水平,使后人在将近两千年的时间里都没有插足的余地,直到笛卡儿等人创立坐标几何、帕斯卡等人创立射影几何,才使得圆锥曲线论有所突破。天文学家开普勒、数学家莱布尼兹等亦从中受益。《圆锥曲线论》集欧几里得、阿基米德等前人之大成,同时将该领域的研究向前推进了一大步,证明