本书应用迦罗瓦理论清晰透彻地论述了两个古典难题的解决方法,即寻找代数方程的求根公式和限用圆规直尺作图(如三等分任意角、把立方体体积加倍、化圆为正方形,以及作正多边形等),并借此由浅入深地向读者介绍了一些抽象代数的基本知识和研究方法。
本书共分四编。首先介绍差分方程概论及一些基本定理;其次介绍用变换的眼光看差分方程;再次介绍差分方程解的稳定性;*后介绍差分方程的实际应用。
本书详细介绍了柯西-许瓦兹不等式、柯西不等式的应用技巧、证明恒等式、解方程(组)或解不等式、证明不等式、证明条件不等式、求函数的极值、解几何问题、切比雪夫不等式及其应用等内容,而且在重要章节后面都有相应的习题解答或提示。
本书共分6编,详细介绍了拉格朗日插值多项式的概念及相关的应用方法。本书内容主要包括:拉格朗日插值在数值计算与逼近论中的应用,特殊集的拉格朗日插值,伯格曼空间和维纳空间的拉格朗日插值,多元拉格朗日插值及复平面的拉格朗日插值。
本书共分四编,从无限集谈起,讲述了皮亚诺曲线、豪斯道夫分球定理、豪斯道夫测度与豪斯道夫维数的相关理论。
本书从一道华约自主招生试题的解法谈起,介绍了斯图姆定理的应用,本书共分为七章,并配有许多典型的例题。
Wolstenholme定理是数论中与素数有关的著名定理,可以利用多种方法对其进行证明。例如,多项式的方法,幂级数的方法以及群论的方法。本书利用初等数论的知识给出了它的一个简单证明,并对其进行了推广。
本书共分三章,分别介绍了奇数和偶数的基本性质,奇偶分析法在解题中的应用,以及奇数和偶数的特殊表示法。每节后都配有相应的习题,供读者巩固和加强。
《张宇考研数学真题大全解》这本书对1987年至今的经典考研数学真题按照大纲章节顺序进行编排,每道题目均设有详细的解析。本书与市面上同类产品相比较,*的特点就是全。市面上很多真题类图书都选取近十年的真题,但事实上,很多之前的真题题目,考查价值丝毫不逊于近十年的真题,甚至更为经典。故本书将1987年至今的32年真题全部收录