不变子空间和约化子空间问题是泛函分析中的一个基本问题。算子的交换子和相似度可以帮助理解算子的结构。Toplitz算子是算子理论中一类重要的算子。算子的相似性是泛函分析中与不变子空间和约化子空间问题相关的一个有趣的话题。该书总结了Bergman空间、Dirichlet空间等解析函数空间中的相似和约化子空间问题。研究方法包
本书是两册泛函分析教材中的下册,作为数学专业研究生公共基础课教材,与本书上册共同构成完整的泛函分析教学体系。本书延续了上册的编写理念,注重理论来源与背景的阐述,深入探讨泛函分析与数学物理、偏微分方程及随机过程等领域的密切联系。全书共分四章:Banach代数、无界算子、算子半群、无穷维空间上的测度论。本书的主要特点是侧重
推理是由已知的判断推出新判断的过程,是获得间接知识、解决和论证问题的重要手段。数学推理是利用数学规律和规则得出结论的抽象过程,数学课程是培养推理能力的重要载体。在公安工作中,推理能力是进行案件侦查、审理,提高办案效率、质量所必需的重要能力。公安院校是公安教育的主阵地,公安院校应该着力培养掌握公安工作所需素质和技能的人才
"数学文化"是面向所有专业大学生(本、专科生及研究生)和社会公众开放的素质教育通识课。教材共十三章,包括:关于数学文化欣赏、数学美学欣赏、数论与数学文化、古希腊数学与人类文明、斐波那契数列与黄金比、奇妙的幻方、数学悖论与数学危机、数学魅力之文学欣赏、数学与艺术欣赏、数学问题、数学猜想与数学发展、变量数学的产生与发展、中
数学不仅仅是抽象的公式和逻辑运算,它的背后蕴藏着人类文明的智慧结晶和思维之美。本书精选小学阶段的数学核心概念,通过历史脉络与生活情境,带领读者探索数学原理的起源、推导过程以及实际应用。 全书从人类计数系统的演进讲起,系统介绍时间、质量、长度、货币等计量单位的标准化历程,阐释数学如何从实际需求中产生。在算术领域,通过自然
本书是在作者多年讲授数学分析课程讲义的基础上编写而成的,是作者多年授课经验与教学心得的总结。全书分上、下两册。上册分三部分。先感性认识与论述初等一元微积分:函数、极限与连续性、定积分、导数,微积分学基本定理,简单常微分方程及一些经典应用。接着是微积分学严格化:实数的公理化定义和极限理论,据此论证一元函数的极限、连续性和
本书是科学出版社“十四五”普通高等教育本科规划教材,是作者总结多年教学实践经验,对教学讲义反复修改编写而成的。本书对传统数学分析教材的编排做了一些与时俱进的改革,内容做了适当缩减和增补,不仅重视传统教材对本课程基础知识和基本技巧的传授,同时也增加了许多在传统教材中没有涉及而对初学者来说可以毫无困难地接受的新内容。本书讲
本书采用精讲例题和精练习题相结合的方式,帮助学生深入理解并掌握高等数学的基本概念、理论和方法。内容覆盖高等数学的主要知识点,结构清晰,条理分明。注重将理论知识与实际应用相结合,以提升学生的数学素养和解决实际问题的能力。本书分为教学篇、竞赛篇两册。教学篇按照高等数学的章节安排,侧重基础知识点的讲解和相应练习,旨在激发学生
本书主要讲述了线性拓扑空间的基本知识及其在泛函分析中的应用;着重强调了线性拓扑空间在分析学,尤其是在泛函分析中的重要性。本书内容涵盖了与泛函分析紧密相关的诸多主题,如线性算子的连续性和有界性、Hahn-Banach定理、弱拓扑和*弱拓扑,以及赋范空间中的弱紧性和弱列紧性等。此外,本书中还特别介绍了赋β-范空间,这是一类
《数学分析讲义》(上、下)册是作者在中国科学院大学授课期间编写的,讲义内容主要参考了华东师范大学数学系编写的《数学分析》,以及国内外一些优秀的教材,并在此基础上作了一些补充。讲义注重分析的几何直观性、理论的严谨和系统性、应用的深入性,以及与后续学科的衔接性。